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Abstract. The behaviour of vibrational plane waves in disordered solids has been studied
theoretically, particularly in the vicinity of the Ioffe–Regel crossover. We have analysed the
behaviour of vibrational excitations in vitreous silica, for which we have found the Ioffe–Regel
crossover frequency to beνIR ' 1 THz (for both longitudinal and transverse waves), in good
agreement with experimental observations. Two methods have been used to obtainνIR : either by
determining the decay timeτ of the plane waves, or by analysing the distribution ink-space of
plane-wave components in the final scattered state of a plane wave.

1. Introduction

The influence of disorder in causing localization of waves propagating in disordered media
continues to be much studied. Much work has been done in the past on localization of electrons
[1], and there is current interest also in the localization of light in strongly scattering media [2].
However, perhaps one of the most fascinating areas of study in this regard concerns vibrational
excitations in disordered materials.

One criterion that has been used in the past to signify the onset of localization is that
of Ioffe and Regel [3]. As the degree of scattering of a wave increases, the mean free path,
l, correspondingly decreases, and the Ioffe–Regel criterion is when the mean free path is
comparable to the wavelength of the wave:

lIR ' λIR. (1)

In this circumstance, evidently a wave can no longer be readily defined. In the case of electrons,
which are very strongly scattered by perturbations in electrostatic potentials associated, say,
with structural disorder, simulations have shown that in fact the Ioffe–Regel criterion does
correspond to the onset of electron localization [4]. For the case of vibrational excitations in
disordered materials, the situation is not so clear cut [4, 5] because ‘bare’ localized vibrational
states can become mixed (hybridized) with bare propagating phonon states; the resultant,
resonant-like states are not spatially localized but instead are extended in character, albeit with
their motion being diffusive, not propagating, in nature.

Recently, interest in the behaviour of vibrational excitations in the vicinity of the
Ioffe–Regel crossover has been rekindled because of a number of inelastic neutron and x-
ray scattering measurements carried out on v-SiO2 [5, 7], the interpretation of which has been
controversial [8].

In an attempt to shed additional light on this problem, we have undertaken a theoretical
(that is numerical and analytic) study of the behaviour of plane-wave vibrational excitations
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in vitreous (v-) SiO2 in the vicinity of the Ioffe–Regel crossover. We have found thereby the
first theoretical estimates for the values of parameters (frequency, wavevector) characterizing
the crossover, and have established that phonon localization doesnot occur at the Ioffe–Regel
crossover, nor are the vibrational excitations propagating in a simple sense above the crossover;
instead they have a diffuse character [9, 10].

2. Model simulations

Models of v-SiO2 have been constructed byN–P–T molecular-dynamics (MD) simulations,
using a modified form [11] of the interatomic potential of van Beestet al[12]. All glassy models
were created by quenching at an average rate of∼1 K ps−1 from the melt at 6000 K, and the
glassy state was subsequently relaxed to a well annealed state (T ∼ 10−4 K). Two types of
model were constructed: a cubic model withN = 1650 atoms and a box length ofL ' 28.4 Å,
and a bar configuration containingN = 1500 atoms of size 85.6 Å×15.6 Å×15.6 Å allowing
access to low values of wavevector (k & 0.07 Å−1) for vibrational modes propagating along the
bar. In addition, several models of the crystalline polymorph,α-cristobalite, were constructed.

The fully dense dynamical matrices of the relaxed models were diagonalized directly,
resulting in eigenvectors{ej }and eigenvalues (frequencies){ωj }of the normal modes, allowing
a complete harmonic vibrational analysis to be performed.

We have analysed the behaviour of vibrational excitations in the vicinity of the Ioffe–Regel
crossover in two very different ways. The first makes use of equation (1) or, more precisely,
the equivalent criterion:

νIRτIR ' 1 (2)

whereν is the frequency of the vibrational wave, andτ is the decay time of the (plane) wave
(sincel = cτ , wherec is the wave velocity). The other treatment is in terms of an analysis
of the wavevector components of the final state to which an initially plane wave is scattered
by the disorder in the structure. Although the results in both cases have been obtained for
the specific example of v-SiO2, so that they can be compared with experimental data [5–7],
nevertheless the methods are of general utility.

3. The Ioffe–Regel crossover: analysis of spectral densities

We have used two ways of estimating the decay timeτk of thek-component of an initially
plane-wave vibrational excitation. The first is by determining the full width at half maximum
(FWHM), 0 (measured in Hz) of the peaks in the spectral densities, since

τk = 1/π0. (3)

The spectral density,|αjk|2, is related to the expansion coefficients involved in expanding
an arbitrary vibrational excitation over eigenmodes, for example at timet :

u(t) =
3N∑
j=1

α
j

k

ej√
m

cosωj t. (4)

For the case of multicomponent systems, with atoms of differing masses (as in SiO2),
a number of closely related spectral densities can be defined, but they have very similar
numerical values [13]. For reasons of simplicity, such relatively inessential details will be
ignored henceforth.

For small values of|k| � 0.1 Å−1, well below the Ioffe–Regel limit and corresponding
to the propagating phonon regime, the spectral densities are rather sharp peaks, more or less
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symmetrical as a function of frequency, (although less so for the case of longitudinal modes).
In such a case, the peaks can be fitted reasonably well by Lorentzian functions, the FWHM
giving 0 and the peak position givingνk.

However, at larger values of|k| > 0.1 Å−1, the spectral-density peaks become increasingly
asymmetric and indeed at mesoscopic values,|k| ' 1.0 Å−1, rather resemble the vibrational
density of states (VDOS), a point to which we will return later. Such asymmetric peaks
obviously cannot be fitted well by Lorentzians, and similar asymmetric peaks in the related
dynamical structure factor measured by inelastic x-ray or neutron scattering have been fitted
previously either by a damped harmonic oscillator (DHO) function [6] or by an empirical
function [5], adapted from an analysis of the phonon–fracton crossover in aerogels. The use of
the DHO function to fit the spectral density should not be used to infer any particular physical
significance for the nature of the vibrational excitations beyond the Ioffe–Regel limit, since it
can equally describe the damped behaviour of a localized oscillator or a propagating collective
mode. Instead, it should be regarded simply as a suitable empirical function with which to fit
asymmetric peaks.

Figure 1. Inverse decay time versus average frequency of plane waves that are longitudinal (open
circles and squares are for bar and cubic models) and transverse (solid circles and squares), together
with experimental data (stars, [5]; open diamonds, [6]). The straight line is the functionτ−1 = ν,
and the crossover between the two curves marks the Ioffe–Regel limit. The values ofτ−1 versus
frequency of the initial plane wave given in the inset were obtained by a temporal-decay method
(open circles) and from fits to spectral densities by the DHO model function (solid diamonds).

The spectral-density functions|αjk(ω)|2 for the models of v-SiO2 have been fitted by
both Lorentzian and DHO functions to obtain values ofτk, using equation (3), and the results
are shown in figure 1. The intersection of the curveτ−1(ν) with the straight lineτ−1 = ν

(cf equation (2)) defines the Ioffe–Regel crossover. For the case of our MD models of v-SiO2,
we find thatνIR ' 1 THz, independentof the polarization (longitudinal or transverse) of the
initial plane wave. This theoretical estimate agrees very well with the value estimated from
inelastic neutron scattering data for longitudinal excitations [5]. The corresponding crossover
wavevectors arekIR,t ' 0.15 Å−1 andkIR,l ' 0.1 Å−1.
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The other way of estimating the decay time,τk, is by analysing directly the temporal decay
of the wave amplitude. This has been done by fitting to the time-decaying quantity,ak′(t), that
is the expansion coefficient involved in the expansion of a displacement vector,u(t), in plane
waves,

u(t) =
∑
k′
uk′(t) (5)

where

uk′(t) = ak′(t)An̂′ cos(k′ · r + φk′(t)) (6)

and whereA is a normalization constant and̂n′ is a unit polarization vector. The empirical
function

f (t) = exp(−t/τk)| cos(2πν̄ ′kt)| (7)

has been used to fit the quantityak(t)/ak(0). The behaviour ofτk(ν̄) obtained in this way is
very similar to that obtained from analysis of the spectral-density peak widths (see figure 1),
yielding a very similar estimate for the Ioffe–Regel crossover frequency.

The crossover wavelengthλIR or frequencyνIR, given by equations (1) and (2), as
originally proposed by Ioffe and Regel [3], donot correspond to the onset of complete
vibrational localization, as has sometimes been suggested [5]. There is an indication of
incipient localization at the frequencyνIR ' 1 THz, as evidenced by a marked dip in the value
of the participation ratio for the vibrational modes [10], but we believe that only the ‘bare’,
unreconstructed vibrational states (originating either from low-lying optic-like branches or
high-k acoustic branches) become truly localized at the Ioffe–Regel limit. However, these
states are mixed with bare propagating acoustic modes to give mixed, hybridized states that
are not propagating but diffusive [14] in character.

The criteria given by equations (1) and (2) might be termed the first Ioffe–Regel crossover.
A second limit is reached when, due to further increased strength of scattering, the mean free
path reaches its minimum possible value, that is the average interatomic spacing,a, i.e.

lmin ' a. (8)

This condition has been taken to signify the onset of localization of electrons in disordered
materials [15], but that is not the case for vibrational excitations (at least for the case of
v-SiO2). Instead, this extreme strong-scattering limit corresponds to the incoherent limit, or
the random-phase approximation, when the phase of the vibrational ‘wave’ fluctuates randomly
from atomic site to site. In other words, this limit corresponds to the wavevector at which the
spectral density can become broadened no further, i.e. when it starts to resemble the VDOS.
This corresponds to an average frequency ofν̄k ' 5 THz for v-SiO2 and coincides with the
point at which the curve ofτ−1(ν) in figure 1 begins to turn over and flatten off. However,
even this limit does not correspond to complete vibrational localization; this only occurs at
the very extremities of the high-frequency bands in the VDOS for v-SiO2, as revealed by the
behaviour of the participation ratio [10].

4. The Ioffe–Regel crossover: analysis of the final scattered state

An initially plane vibrational excitation in a disordered material is scattered to a number of
other plane waves having different wavevectors (and frequencies) because of the disorder and
because a plane wave is not an eigenmode of the system. A signature of very strong scattering
is that the variance (or uncertainty),1k, in the wavevector of the final scattered plane waves
is comparable to the wavevector of the initial state, i.e.

1k ' k. (9)
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This strong-scattering criterion has also been taken [15] to be indicative of the Ioffe–Regel
limit, marking the onset of localization (at least for electrons). We have made an analysis of the
nature of the final scattered state of an initial plane vibrational wave in terms of the wavevector
k′ of the final state, and have proposed a new precise criterion for the Ioffe–Regel crossover
somewhat related to equation (9). The analysis of the final state after scattering is, of course,
complementary to the temporal-decay method described above and should give rise to similar
conclusions and results.

Consider an initial plane-wave excitation, characterized by wavevectork and polarization
n̂, scattered to a final state comprising different plane-wave components characterized byk′

and n̂′. The quantity of interest is the distribution,ρ(k′, n̂′|k, n̂), of weights of different
plane-wave components in the final state averaged over time. This can be written [13] as a
sum over spectral densities, but the problem with using the spectral densities calculated from
the vibrational eigenvectors for the relatively small models that we have studied is that the
spectrum of modes in the particular region of interest,νIR . 1 THz, is very sparse due to
finite-size effects, and therefore the true behaviour ofρ is difficult to discern there. In order
to circumvent this difficulty, we have calculatedρ using:

ρ(k′, n̂′|k, n̂) = 3N
∫ ∞

0
g(ω)|α(ω|k′, n̂′)|2|α(ω|k, n̂)|2 dω (10)

whereg(ω) is the VDOS. In the frequency region where the spectrum is sufficiently dense
(ν > 0.6 THz), we have used the VDOS and spectral densities calculated from the simulations.
However, for lower frequencies, we have assumed that the VDOS can be approximated by the
Debye law, and that the spectral densities can be represented as Lorentzians, whose peak
positions are obtained from the dispersion law (using either calculated or experimental values
of sound velocity) and widths obtained using an extrapolation of the quadratic frequency
dependence found experimentally [5, 6] and in our simulations.

The results forρ calculated in this way are shown in figure 2. It can be seen that, for
very small values of wavevector (figures 2(a), (b)), an initial plane wave of either polarization
type scatters to a final state consisting ofbothlongitudinal{l} and transverse{t} polarizations,
each having approximately the same frequency as the initial plane wave,ν ′ ' ν. Note that
an initially {l} (or {t}) plane wave scatters to a (narrow) distribution of other{l} (or {t}) waves
having thesameaverage wavevector, but also to other{t} (or {l}) plane waves having greater
(or smaller) wavevectors (since the sound velocities are such thatcl > ct , andν ′l,t ' νl,t ).

As the wavevector of the initial plane wave increases, the widthsδkl,t of the two peaks
for the {l, t → l} and {l, t → t} channels increase (approximately quadratically withk,
following the behaviour of|αjk|2), as does the separation1k′ of the two peaks in theρ function
(approximately linearly withk). In this picture, we ascribe the Ioffe–Regel limit to the condition
when the two individual peaks forρt andρl merge to give a single peak in the total distribution
function,ρtot = 2ρt + ρl , i.e. when

1k′ ' δkt,l . (11)

As seen from figures 2(c) and (d), this occurs at values of initial wavevectorkl ' 0.1 Å−1 and
kt ' 0.15 Å−1, in agreement with the values inferred using the criterionνIRτIR ' 1 (figure 1).
At yet larger values of initial wavevector,ρtot becomes a very broad and featureless asymmetric
peak-shaped function. In this picture, therefore, the Ioffe–Regel crossover is associated with a
transition from a weak-scattering regime (1k′ � δk′), where an initial plane wave is scattered
to both longitudinal and transverse plane waves having roughly the same frequency and a
narrow distribution of wavevectors, to a strong-scattering regime (1k′ � δk′), where the
final scattered state consists of very many plane-wave components (both longitudinal and
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Figure 2. The distribution functionsρ(k′, n̂′t |k, n̂) (dot–dashed lines and circles),ρ(k′, n̂′l |k, n̂)
(dashed lines and squares) andρtot (k′|k, n̂) (solid lines and diamonds) for longitudinal, (a), (c),
(e), and transverse, (b), (d), (f) initial polarizations of plane waves characterized by different initial
wavevector magnitudes. Plots (c) and (d) correspond to the Ioffe–Regel crossover. The lines
represent the results for an analytical model while the symbols are from numerical simulations.

transverse), characterized by wavevector magnitudes differing from the initial one by values
of the order of the initialk magnitude itself.

5. Discussion

As follows from equation (10), plane waves scatter not only to modes of approximately the
same wavelength but also to modes of rather different wavelength but of similar frequency.
We have confirmed this conclusion by numerical analysis at not very low wavevectors (see
the symbols in figures 2(e) and (f)). Such an effect is due to structural disorder, causing the
coupling of plane waves with different wavevectors and polarizations but similar energies. A
possible scenario explaining such coupling is based on the following qualitative picture of the
vibrational spectrum of disordered structures.

We suppose [10] that the vibrational states in the low-frequency region comprise two sets of
bare states, plane waves (Debye spectrum) and band-tail states, which are mixed together. The
bare band-tail states can originate, for example, from a low-lying optic band in the crystalline
counterpart, and/or from the short-wavelength part of the acoustic band. The structural disorder
destroys the band-like spectrum of the crystalline counterparts and pushes the states up and
down in frequency, leading to the appearance of band tails. The bare localized states from the
lowest tail interact with acoustic waves because they lie in the same frequency range. Coupling
coefficients are hardly sensitive to the polarization of acoustic waves so that the resulting
resonant states (eigenmodes) roughly equally contain plane waves of different polarizations
(different wavevectors) and approximately of the same frequency.

Such a very qualitative picture can be supported by the results of our numerical simulations
for v-SiO2, where aroundν ' 1 THz we indeed found resonant-like states containing both
localized and wave-like constituents (see figure 3(a)). In figure 3(a) we show a real-space
representation of the eigenmode having frequencyν ' 1.05 THz and characterized by the
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Figure 3. (a) Real-space representation of the atomic displacements projected along the bar
direction (x) for an eigenmode with frequencyν ' 1.05 THz and participation ratiop ' 0.08.
(b) Acoustic-like plane-wave contributions with a wavevector cutoffk∗ = 0.8 Å−1. (c) Difference
between (a) and (b), showing the localized components (large amplitude) and the ‘random’
constituent.

participation ratio,p ' 0.08. As clearly seen from figure 3(a), this eigenmode contains
both localized and non-localized (wave-like) components. The major part of the wave-like
component is represented by a mixture of longitudinal waves having wavelengths equal to
half the box size,λ = Lx/2, and transverse waves with wavelength,λ = Lx/3 (figure 3(b)).
The localized component is characterized by large atomic displacements (mainly of oxygen
atoms) and contains two localized contributions separated in space (a pronounced one around
x ' −40 Å and a less pronounced one aroundx ' 20 Å).

In order to understand the origin of the localized component, we extracted it from the
eigenmode in the following manner. First, we expanded the eigenmode in plane waves with
all polarizations and calculated the distribution of the weights of different plane waves. Such
a distribution is combined from two distributions of the weights of longitudinal and transverse
waves, which are peak-shaped with the peak position aroundkt,l ' 2πν/ct,l [16]. Then we
removed the major acoustic component (see figure 3(b)) from the eigenmode by subtracting
all plane waves having wavevectors in the peak regions of the distributions of the weights.
In practice, we removed from the eigenmode all plane waves having wavevector magnitudes
less than a certain cutoff,k∗. The valuek∗ has been chosen so that varying it does not change
significantly the shape of the rest of the eigenmode (e.g.k∗ = 0.8 Å−1). After removing
the acoustic component, we found the rest of the eigenmode to be comprised of the localized
part and a so-called random component [17] (see figure 3(c)). The random component can be
imagined as a short-wavelength part in the Fourier expansion of the eigenmode. It should be
noted that by considering only a set of plane waves propagating along the bar, the shape, but not
the width, of the ‘acoustic-like’ component of the eigenmode can be reproduced. However, the
width of the acoustic-like component becomes comparable to that of the eigenmode when plane
waves propagating indifferentdirections are included. However, subtracting this component
from the total eigenmode gives a ‘random’ component still of comparable width to the acoustic-
like component. It may be that the random component is simply an artifact of the finite size of
the simulation box: were more waves propagating in yet more directions to be included, it is
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plausible that the entire non-localized part of the eigenmode could be represented as a sum
of a number of plane waves. The displacements of atoms in the random component,〈uran〉,
are much smaller than those in the localized one,〈uloc〉. Therefore we are able approximately
to separate the localized component (with accuracy〈uran〉/〈uloc〉) by choosing atoms having
displacements larger than a certain cutoff (u > u∗, e.g. withu∗ = 0.1). The resulting localized
constituent (located at aroundx ' −40 Å) is shown in figure 4. The motion of atoms for
such a localized bare vibration can be imagined as coupled displacements and rotations of
SiO4 tetrahedra (see figure 4). We have compared these vibrations with the short-wavelength
vibrational motions inα-cristobalite of similar frequency and found them to be very similar to
each other.

Figure 4. Real-space visualization of the atomic motions characterizing the localized constituent of
the eigenmode atν ' 1.05 THz (localized atx ' −40 Å in figure 3). The figure is a superposition
of two snapshots of the mode at different times: in one snapshot, silicon atoms are coloured blue and
oxygens are green, and in the other silicons are orange and oxygens are red. The localized mode
has been extracted from the resultant displacement pattern shown in figure 3(c) by considering
only those atoms (16 oxygens and two silicons) having displacements greater thanu∗ = 0.1. The
nearest-neighbour atoms to these atoms with greatest displacement have also been included for
ease of visualization. The motion consists of rotational and translational displacements of coupled
SiO4 tetrahedra.

We would like to stress that in macroscopic systems the bare localized components in
the low-frequency regime are actually dispersed in the dense acoustic spectrum. Only due to
the finite size of the simulation box and, as consequence of this, a not very dense acoustic
spectrum, are we able to distinguish the bare localized component and investigate it.

6. Conclusions

We have investigated theoretically the Ioffe–Regel limit for vibrational excitations in vitreous
SiO2 using structural models constructed using molecular dynamics. We find the Ioffe–Regel
crossover frequency to beνIR ' 1 THz for both longitudinal and transverse plane-wave
excitations, with corresponding crossover wavevectorskIR,l ' 0.1 Å−1 andkIR,t ' 0.15 Å−1.
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Consistent theoretical estimates have been obtained using very different methods, involving
either the decay time of plane waves (evaluated in several ways), or the distribution of
wavevectors of plane-wave contributions characterizing the final scattered state. Although
these methods have been applied to the particular case of glassy silica, for which relevant
experimental data are available, nevertheless the methods are completely general.
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